Search results for "akustinen sironta"

showing 2 items of 2 documents

Controllability method for acoustic scattering with spectral elements

2007

We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improveme…

DiscretizationHelmholtz equationApplied MathematicsNumerical analysisSpectral element methodMathematical analysisSpectral element methodFinite difference methodExact controllabilityFinite element methodControllabilityakustinen sirontaComputational MathematicsMass lumpingHelmholtz equationSpectral methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

Controllability method for the Helmholtz equation with higher-order discretizations

2007

We consider a controllability technique for the numerical solution of the Helmholtz equation. The original time-harmonic equation is represented as an exact controllability problem for the time-dependent wave equation. This problem is then formulated as a least-squares optimization problem, which is solved by the conjugate gradient method. Such an approach was first suggested and developed in the 1990s by French researchers and we introduce some improvements to its practical realization. We use higher-order spectral elements for spatial discretization, which leads to high accuracy and lumped mass matrices. Higher-order approximation reduces the pollution effect associated with finite elemen…

Numerical AnalysisPartial differential equationPhysics and Astronomy (miscellaneous)Helmholtz equationApplied MathematicsMathematical analysisSpectral element methodFinite element methodComputer Science ApplicationsControllabilityakustinen sirontaComputational MathematicsMultigrid methodModeling and SimulationConjugate gradient methodSpectral methodMathematicsJournal of Computational Physics
researchProduct